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ABSTRACT 
One metric of the intelligence of a system is its ability to 
perform tasks in the face of dynamic changes to the 
environment. This requires that an autonomous system be 
capable of responding appropriately to such changes. One such 
response is to effectively adapt the allocation of resources from 
planning to execution. 

By adapting the resource allocation between cognition 
and execution, an intelligent system can produce shorter plans 
more frequently in environments with high levels of 
uncertainty, while producing longer, more complex plans when 
the environment offers the opportunity to successfully execute 
complex plans. 

The effective planning horizon is developed from an 
analysis of mathematical models of classic autonomous system 
and from current research in cognitive science. Experimental 
results are presented showing the performance gain from an 
effective planning horizon based system. 

From this simplified feedback control model, the 
Effective Planning Horizon concept is extended to a more 
realistic intelligent system architecture, and the concepts of 
bounded rationality, intelligent heuristics and the judgment 
analysis "lens model" are shown to be analogs of the effective 
planning horizon. 
 
Keywords: Effective Planning Horizon, Interleaved 
Plan/Execution, Probabilistic Planning, Intelligent System. 

1 INTRODUCTION 

The world is not a perfect place, and if intelligent 
systems are to function effectively they must be capable 
of handling both the uncertainties of the world outside 
themselves and those created by their own limitations.  
One working definition of intelligence is the ability to 
adapt to unexpected failure.  Using this definition, 
intelligence is defined by the ability of the system to 
achieve goals in the face of failure. In order to do this, 
the system must have some mechanism to detect that its 
current method for satisfying its goals is insufficient, and 
to select and apply new methods.   

In this paper we present the concept of an effective 
planning horizon as a requirement for intelligence. We 
start by discussing the reasons that an effective planning 
horizon is necessary.  We place the model of an effective 
planning horizon into a model of an intelligent system.  
Then we develop a mathematical definition of the 
effective planning horizon.  This definition is tested in 
the domain of a simulated Autonomous Underwater 

Vehicle.  In the final sections of the paper we present 
arguments to show that the effective planning horizon 
concept can easily be transformed into its analogs in 
sensing, acting, and goal selection. 

2 WHY AN EFFECTIVE PLANNING HORIZON 

Why can’ t an intelligent system just make one plan?  
The answer to this lies in the balance between the 
complexity of all environments and the limited 
computational resources that any intelligent system can 
apply to the problem.    

It is obvious that all natural environments and all 
but the simplest of synthetic environments are 
stochastic.  Even in a simple deterministic environment, 
the observations made by an entity have a probability 
distribution [1].  As demonstrated below, if the 
environment is not deterministic, then the longer the 
plan needed to meet the goal, the less likely it is to 
succeed.  However, even in an interleaved planning-
execution system, too short a plan length will often lead 
to sub-optimal plans.  

Alternatively a system could generate all 
conceivable plans in advance and maintain those in a 
plan library [2]. But, in any realistic domain, it is not 
possible for an intelligent system to completely explore 
all the possible ramifications of a plan of action in a 
realistic time [3].  In addition, to time constraints, there 
are memory constraints.  In fact for one nominally 
intelligent system, only 7±2 objects can be held in 
working memory at any one time [4].  This seriously 
limits the number of plans that can be considered.  This 
has led to the concepts of “bounded rationality”  in both 
biologic [5] and machine based intelligence [6].  

Thus, it appears that all intelligent systems (whether 
biologic or electronic) must make trade-offs between 
cognition and action. There are many mechanisms for 
placing bounds on cognition, and in this paper we focus 
on the concept of a planning horizon.  

3 A MODEL OF AN INTELLIGENT SYSTEM  

The model we use is based on the elementary loop of 
functioning (E.L.F.) model of Meystel and Albus [6].   
This model assigns responsibility for four critical tasks 
to independent processes in an iterative - sense, model, 



plan, act loop. We have extended this model by adding a 
new process, validate.  This new process has the ability 
to compare the observed result of the previous cycle 
with the expected result.  It then updates the other 
processes with the observed success or failure of the 
cycle.  This is show graphically in Figure 1.   

This model allows for the representation of 
intelligence as a semi-lattice.  In this representation, the 
intelligence of a system is defined by the ability of the 
system to perform each of these processes.  We utilize 
goal satisfaction rates as a primary metric of 
intelligence.  The intelligence of the system is a 5-tuple 
of the intelligence of each of the processes.  The 
intelligence of each of the processes is incommensurate 
with the intelligence of the other processes, thus 
establishing the partially ordered set needed for the 
lattice. 
 

 

Figure 1 Extended model of Intelligent Systems 

4 INTELLIGENT SYSTEMS 

Since the earliest work in machine intelligence, a 
concern has been the computational burden required for 
‘ intelligent’  behavior. With the representation of 
planning as search [8] came the exponential growth of 
the number of world states explored with the increase in 
search depth. The number of world states explored is a 
measure of the computational complexity of the 
planning process. It has been long accepted that as 
uncertainty and dynamism increase in an environment, 
the need for more reactive systems also becomes greater 
[9]. In recent work, quantitative relationships have been 
suggested for the impact of three types of domain 
uncertainty on the ability of an autonomous system to 
achieve goals.  

This work classifies domain uncertainty into three 
categories: 

Sensor uncertainty; 
Effector uncertainty; and, 
Uncertainty caused by exogenous events. 

 
These three types of uncertainty have been used in a 
simulation system that measures the goal satisfaction of 
a simulated maintenance robot under widely varying 
levels of each of these types of uncertainty [10].  

These results suggest that autonomous systems are 
very sensitive to even low levels of uncertainty in the 
environment, with overall goal satisfaction dropping to 
75% with the introduction of 10% sensor errors. In 
addition, this research discovered that the ability to retry 
on failure was very effective at allowing the system to 
maintain goal satisfaction in the face of all types of 
uncertainty. The simulated robot was more robust (i.e., 
able to satisfy goals as the environment changed) when 
it used different deliberation and execution mixes in 
response to different levels of uncertainty in the 
environment. 

5 DEFINING THE EFFECTIVE PLANNING 

HORIZON 

Beginning with early two-player game models, it has 
been common to place a limit on the search depth used 
to explore options. This was often implemented as an 
arbitrary limit on the ply-depth of an alpha-beta search 
tree. 

In two player games of perfect information, it is 
implicitly assumed that if the computational resources 
were sufficient, the ply-depth could be increased until a 
perfect game analysis was performed. However, when 
an intelligent system is playing against the real world, 
conditions change. Since there is an inherent variability 
in the world, perfect information is impossible. Under 
these conditions, there appears to be a hard limit on the 
planning horizon – a line beyond which planning is 
useless, since it is impossible to know the state of the 
world in which the planning is taking place. 

We approach the idea of an effective planning 
horizon from the perspective of the expected value of 
additional planning. What is the value associated with 
extending my plan, and what is the likelihood that the 
world will be in the state I planned for? 

)(*)Pr()( PlanValueplanplanE =  (1) 

While solving the exact value of equation 1 may be 
impossible, it is possible to make some reasonable 
assumptions about the terms, and from these 
assumptions draw some conclusions about the 
characteristics of the expected value of planning in 
dynamic and uncertain domains. 

We make three assumptions about the actions in a 
plan: 

1. The action achieves some state that is needed to 
achieve a goal (or goals); 



2. Each action has some finite probability of 
failure; and, 

3. All the actions in the plan must succeed for the 
plan to succeed. 

Under these assumptions it is clear that a first 
approximation of the probability of the plan succeeding 
is:  

∏=
steps

Stepplan )Pr()Pr(  (2) 

This can be further simplified by assuming that all 
actions have some common probability of success, 
reducing Equation 2 to:  

lengthstepplan )Pr()Pr( =  (3) 

Approximating the value associated with a plan of given 
length is more problematic, however for any given 
domain and set of possible goals to achieve some useful 
assumptions can be made. 

First, let us envision the complete range of problems 
that our intelligent system might be required to solve. 
This range could be defined as the cross product of all 
possible initial conditions with all possible final states. 
Then let us imagine the plans that might be utilized to 
transform the world as we find it into the world as we 
desire it. Clearly, very few of the (Initial, Final) pairs 
can be transformed by plans utilizing a single action. A 
few more, perhaps, can be achieved with two-action 
plans, more yet by three action plans, and so on. If we 
further take the view that we wish the simplest, or most 
likely, plan to satisfy our needs, then there will be few 
pairs that require 1000 action plans, and fewer still that 
require 2000 action plans. If we model the value of a 
plan of size N as the number of (Initial, Final) pairs that 
can be satisfied by a plan of length N or less, we get a 
sigmoidal, or logistic curve. This curve can be closely 
approximated with an equation like (3) below: 
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Finally, combining the two terms into the expected value 
of a plan of length N, for a given domain, and task 
assignment, we find that the resulting curve has the 
characteristic shape shown in Figure 2. 
This finding is consistent with the analysis that, there 
exists some point beyond which the costs associated 
with planning exceed the benefits, which causes the 
expected value to decrease. Under the assumptions made 
above, we can conclude that there is a range of plans, 
which provide the optimal benefit to the deliberative 

system. This range is defined as the effective planning 
horizon (EPH).  If the planning depth is less than the 
EPH, the probability that effective solutions will be 
produced is too low. If the planning depth exceeds the 
EPH, the probability that significant amounts of 
computational resources will be expended planning for 
situations that never occur is high.  If those resources 
had been applied more effectively, the rate of goal 
satisfaction could increase.  However, while this analysis 
suggests that it is beneficial to adjust the planning 
horizon to the domain and goals of the intelligent 
system, it does not provide any mechanism to achieve 
this adjustment. 

Prediction of Expected Plan Value as a 
function of plan length
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Figure 2 - Expected Value of Planning 

5.1 METHODS OF ADJUSTING THE PLANNING HORIZON 
In this paper we investigate a method of selecting an 
effective planning horizon, adapted directly from the 
notion of placing a limit on the search depth. The 
planning system used is an interleaved, probability-
aware, forward chaining planning and execution 
environment. It is a general-purpose planner in that all 
domain specific information is encoded as part of an 
input file. Included in this domain specific information 
are naive probabilities of success for the available 
actions. The planning system uses this information to 
produce the plan with the highest observed probability 
of success.  

These experiments were run using an autonomous 
underwater vehicle domain. In this domain the planner is 
embedded in the autonomous underwater vehicle 
(AUV). The types of tasks assigned to the AUV include 
autonomous navigation, the deployment of monitoring 
devices within enemy controlled territory, and avoiding 
or escaping detection by enemy Anti-Submarine 
Warfare (ASW) surface vessels.  

 
A typical task assignment would be to: 
1. Begin from Home base, at the surface, carrying 

a deployable monitor;  



2. End at Home base, at the surface, with the 
monitor deployed at a location just outside the 
mouth of the enemy harbor; and, 

3. By the way, don’ t get detected by any enemy 
ships while you do it.  

If the system has perfect knowledge, and nothing 
changes, this task is a straight forward planning exercise.  
However, in this domain, the enemy ship moves while 
the AUV is executing its mission and the AUV has 
limited sensor range. This forces the planner to develop 
a plan, begin to execute it, and respond to failures.  
These failures could include finding the ASW ship in its 
path or being detected during a move.  More complex 
failures might involve having to switch goals to escape 
detection and then re-target the goal of dropping the 
monitor, once it has lost its opponent. 

The planning and execution system is interleaved, 
so during the execution of actions, it receives feedback 
about the actual state of the world (at least those parts 
which it can sense) and it compares the actual state with 
its expected state. As long as the expected state of the 
world and the actual state agree, the system continues to 
execute the planned actions. If the states do not match, 
several options are available: 

1. Continue with the current plan, 
2. Develop a new plan to meet the current goals,  
3. Re-evaluate the goals, and develop a plan to 

meet the new goals, or 
4. Do nothing, and hope that the world changes. 
After this evaluation, a new action is issued, and the 

process begins again. Since the planner is deeply 
embedded in the execution loop, strict limits on 
computation must be imposed to assure responsive 
behavior of the system. 

5.2 SEARCH DEPTH CONTROL 
Search depth control has been used to limit computation 
for as long as planning as search has been used. In 
general there are two forms of this control: limiting the 
exploration depth directly – such as ply-depth limits, or 
plan length limits- and world set limits. In the latter case, 
the planning system monitors the total number of 
individual worlds explored, and at some pre-determined 
limit, stops exploration. This has benefits when coupled 
with search control rules which allow the planner to 
‘ focus attention’  on areas of the plan which might be 
more fruitful. The experimental planning system used 
here uses this world count form of search depth control. 

To explore the impact of limiting search depth on 
plan success rates the senario is analyzed under a range 
of allowable search depths.   

6 EXPERIMENTAL RESULTS 

The experiments were designed to answer the question 
“For a given domain, and a given task mix, at what point 

does it stop paying to plan?”  Using the analysis in 
Section 5, we measure the marginal value of planning by 
measuring the success rate of the plans produced, and 
the computational complexity of producing the plan.  All 
experiments are run on the same interleaved planning 
and execution system, coupled with an external 
simulator of the domain. 

6.1 EXPERIMENT SETUP 
The domain used is that of the AUV, described above. 
The AUV can navigate in a world of 18 possible 
locations, at up to three depths for each location. Any 
motion has a risk of causing the AUV to be detected, 
however the deeper the AUV the lower the risk, In 
addition to movement actions, the AUV can change 
depth, deploy a monitor, and cause a tracking ASW 
vessel to lose track by going deep and drifting. The 
AUV carries one monitor, and the task requires the AUV 
to deploy that monitor at a specific location and return to 
base undetected.  

 

Figure 3 - Autonomous Underwater Vehicle 
domain 

The task assigned to the AUV in these experiments 
is to travel from home base (Location A) to Location P, 
release a monitor, and return to Location L for pickup 
(sub-lp10.prob). It has the additional requirement of 
remaining undetected during the mission, and should it 
be detected it must cause the enemy vessel to lose its 
lock before being picked up (Figure 3).  The AUV has 
six general types of operators to apply: 

Table 1 Relative probability of success for the 
AUV domain. Failure can mean either the AUV is 

detected, the operator fails, or both. 

Operator Type A priori Probability 
of Success 
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Travel Surface 0.45 
Travel Shallow 0.90 
Travel Deep 0.95 
Change Depth 0.99 
Release Monitor 0.99 
Drift (can cause opponent to lose 
detection) 

0.25 

 
For the assigned task, the naïve probability of 

success is approximately 0.46, if the plan with highest 
probability is selected, or 0.00015 if the plan with the 
minimum number of operators is selected. One 
additional complicating factor is the behavior of the 
ASW vessel. This unit moves around the map in a 
random walk, and if it occupies a location it blocks the 
AUV from traveling to that location. The location of the 
ASW is initially unknown by the AUV, however, the 
AUV can sense the presence of the enemy vessel if it 
enters or leaves an adjacent location. 

A single simulation consists of assigning a task, 
executing the mission, and recording the number of 
individual world states explored by the planner during 
the execution of the mission and the success or failure of 
the mission.  

Two baseline simulations are initially run. In the 
first the planning horizon required for success by a non-
interleaved planning system is determined.  Since a non-
interleaved system must be able to produce a single plan 
to meet all the mission goals, the required search depth 
is much greater than that required by an interleaved 
planner. In this experiment the planning horizon is 
increased until the planning system reaches the point 
where it can produce a complete, successful plan. This 
established the minimum planning horizon for a non-
interleaved planner.  Since the planner is only allowed to 
execute a single cycle, the success rates of this plan 
cannot be effectively compared with the success rates of 
the interleaved simulations. 

The second baseline addresses this problem by 
using the planning horizon established by the first 
baseline. However, the planning/execution system is run 
in interleaved mode, allowing the planner to correct 
failures. This second baseline establishes the plan 
success rate and the minimum number of world states 
required for an interleaved planner operating without a 
search depth limit.  

The experimental simulations use an interleaved 
planning system, with a range of planning horizons.  In 
all experiments a minimum of 100 independent 
simulations are run at each planning horizon. In 
interleave mode, the system is allowed to compete up to 
five planning/execution cycles.  The average number of 
world states examined during the each simulation and 
the average success rate of the mission are recorded.  

 
 

6.2 DATA ANALYSIS 
The data analysis is straightforward. We calculate the 
value of the planning horizon (PH) as: 

ExploredMegaWorlds

eSuccessRat
PHValue =)(  (5) 

The value is the success rate over the work expended 
(million worlds explored to achieve the success rate). 

Baseline 1 established that it is necessary to 
examine approximately 13,000 world states, and the 
success probability is 0.14 for the non-interleaved 
planning system. Due to the interaction with the ASW 
vessel, this is significantly below the naïve probability 
(0.46). In effect, most of the computational resources 
used by the intelligent system are expended planning for 
situations that simply do not occur during the execution. 
For Baseline 1 the Value(PH) = 10.76. 

Using the planning horizon established by Baseline 
1, Baseline 2 achieves a success ratio of 0.74.  However 
it explores 66,000 world states, for a Value(PH) = 11.21.  
Interestingly, even though the success ratio increased, 
the number of world states explored did so 
proportionally.  This data is presented in Table 2. 

Table 2 Baseline performance of complete 
planning system. In Baseline1 a single iteration of the 

planning system was allowed, in Baseline2 five 
iterations were completed. 

Test Worlds Success Rate Value(PH) 
Baseline1 13,000 0.14 10.76 
Baseline2 66,000 0.74 11.21 

 
The experimental simulation was run with the range 

of planning horizons shown in Table 3.  Note that the 
peak value of value(PH), 68.7 is approximately 6 times 
the value achieved by Baseline 2.  This shows that at the 
effective planning horizon, the planning system is 
achieving equivalent success rates with significantly less 
computational cost. 

 
 
 

Table 3 Table of the computational resources 
required for varying planning horizons, the achieved 

success rates, and the Value of the invested 
computational resources. 

Planning 
Horizon 

Worlds Success Rate Value(PH) 

100 9,605 0.02 2.08 
150 14,200 0.04 2.81 
200 18,854 0.06 3.18 
250 12,813 0.88 68.7 



300 14,586 0.88 60.3 
350 16,717 0.91 54.4 
400 19,358 0.89 46.0 
450 20,026 0.94 46.9 
500 22,315 0.90 40.3 
550 22,726 0.93 40.9 
600 27,615 0.86 31.1 
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Figure 4 - Plotted Value of Effective Planning 
Horizons from the AUV problem 

In Figure 4, the value of the planning horizon, as 
defined in Equation 5 is plotted against the search limit 
imposed on the planner. The first three points are 
characteristic of planning horizons that are too short to 
allow the planning system to find successful plans.  The 
range from 250 – 350 represents the range of the EPH 
where successful plans are being found with minimum 
computational investment.  The range above 350 is 
characteristic of wasted resources, planning for 
situations that never occur.  

The effective planning horizon is the global 
maximum of this curve.  It should be noted, that this 
figure closely resembles the analytic solution shown in 
Figure 2. The “Baseline2”  line is the value achieved by 
Baseline 2.  

It is clear that limiting the planning horizon in 
interleaved intelligent systems allows the system to 
achieve success rates which are comparable to complete 
planning systems, at a fraction of the invested resources. 
While the current data results from adjusting the search 
limit utilized by the planning system, several other 
mechanisms exist to adjust the planning horizon, 
including waypoint based planning [11], and the use of 
assumptive systems [12], which was successfully 
applied during the 1994 AAAI Robot Contest. 

7 EXTENSION TO A COMPLETE 

INTELLIGENT SYSTEM MODEL 

The preceding discussion describes the benefits of an 
effective horizon in planning.  However, this argument 
can be extended to all of the other processes.   

 
Sensing 
Validation 
Re-Goaling 
Acting 
 

In the next section we sketch some ways in which 
effective horizons might be achieved for these processes.  
Much of this discussion will be derived from work done 
on biologic systems. 

7.1 EFFECTIVE SENSING HORIZONS 
One model of the sensing process can be taken from the 
work of Egon Brunswik [1]. In this lens model, shown 
graphically in Figure 5, perception can be modeled as a 
linear weighted sum:  
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Where ys = the judgment of the condition of target s 

ye = the actual environmental condition of                          
the target 
n = the total number of cues available to the judgment 
maker 

     xi  = value of cue i, where i goes from 1 to n 
     wi = the weighting of cue i 
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Figure 5 - The Lens Model of Egon Brunswik 

 
For this process the effective sensing horizon will 

be a balance between using so few cues that the 
perception in invalid and using so many cues that the 
cognitive system is overloaded. 

7.2 EFFECTIVE VALIDATING HORIZONS 
Validation of the successful completion of a cycle is 
critical if the intelligent system is to adapt to unexpected 



outcomes. However, given limited sensing ranges, and 
long distance effects, it can be resource intensive to do 
complete validation. In some cases, the system may have 
to develop and achieve complete new sub-goals to 
accomplish this phase. Yet, the costs of proceeding 
without validation can be extreme. Thus any intelligent 
system must strike a balance between the costs and 
benefits of validating the world state. 

In addition, when things go wrong, an intelligent 
system must assess the probable causes of the failure, 
and make improvements or the same ineffective actions 
will occur again and again. If the mission failed because 
a sensor was incorrectly interpreted causing a specific 
action to fail, it is not intelligent to expend resources 
improving the action. However, correctly attributing the 
source of a failure is extremely resource intensive, and 
limits must be placed on its application.  

7.3 EFFECTIVE GOAL RE-PRIORITIZATION HORIZONS 
Intelligent systems do not pursue the same goals at all 
times. Consider the mother alligator, who under normal 
circumstances has a hair trigger bite reflex. Yet, this 
same alligator will carefully carry its young about 
cradled in those same jaws. Clearly, this intelligent 
system is re-prioritizing its goals in response to changes 
in its environment. 

However, this ability to re-goal comes at a cost. Re-
goaling requires the system to use cognitive resources 
that could be applied in other ways, and errors in goal 
prioritization can reduce the success probabilities of the 
system. This is the same dynamic tension that exists in 
the selection of an EPH. 

7.4 EFFECTIVE ACTION HORIZONS 
Just as all biologic intelligent systems have limits on 
cognition, there are limits on both the number and range 
of actions the system can undertake to achieve a goal, 
and the quality of those actions. In biologic systems 
“Use it or lose it”  applies, yet limited time is available 
for practice.  With mechanical systems one tends to 
think of the range of actions that are available as fixed at 
the time of construction, and the quality (probability of 
success) as constant. However, as bearings wear out, and 
rubber gripping fingers age, the ability of the system to 
meet its goals degrades, until new resources are applied. 
While self-repair is beyond the current capabilities of 
most machine-based intelligent systems, they can 
possess the ability to update the reliability of actions to 
reflect changes in the system itself. 

8 CONCLUSIONS 

The focus of this paper is on utilizing limited 
computational resources to improve the effectiveness of 
intelligent systems. Drawing on research from existing 
biological intelligent systems and current research into 

machine-based intelligent systems, an analytic definition 
of the Effective Planning Horizon was developed. 

Success probability in stochastic domains was 
presented as the key metric for evaluating intelligent 
systems, and several secondary measures including the 
expected value of planning, and plan value as a function 
of computational load were introduced as supporting 
concepts for the Effective Planning Horizon. 

The EPH is a measure of the dynamic and variable 
nature of the environment, and the goals and limitations 
of the intelligent system. From these characteristics it is 
possible to establish a horizon beyond which additional 
planning is ineffective. 

A simulated domain was presented which is 
representative of the types of tasks we expect deployed 
intelligent systems to undertake, and using a planning 
and execution system designed for these demanding 
domains, experimental data was collected. The data 
collected demonstrates that it is possible to achieve the 
same levels of success as the computationally expensive 
complete exploration of a plan space, at significantly 
lower cost. This lowered cost translates into lowered 
demands on the system, or increased speed of execution 
by the intelligent system, which can be crucial design 
requirements of future embedded intelligent systems. 

Finally, the same principles which led to the 
formalization of the Effective Planning Horizon were 
applied to the other processes in feedback control theory 
based intelligent systems, suggesting other mechanisms 
that can be used to improve goal satisfaction by 
intelligent systems. 
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